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Figure 1. We show the top 4 nearest neighbors retrieved based on the learned latent action space of different methods. Previous methods
rank mostly based on static scene context and the nearest retrievals consist of incorrect, different actions in the same environment.
Meanwhile, our method successfully ranks based on action similarity, regardless of the viewpoint (ego/exo) or scene difference.

Abstract
Action learning should capture interaction dy-
namics that generalize between viewpoint and
scene changes. Although recent work pursues
view-invariant representations, these methods of-
ten overfit to scene cues, weakening their ability
to model fine interactions. This issue is espe-
cially acute for atomic actions, which are short,
interaction-centric primitives. We address this
with an atomic action embedding model trained to
be invariant to both ego–exo viewpoint shifts and
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scene changes. We learn a latent space such that
clips of the same atomic action are pulled together
across scenes and views, while different actions
from the same scene are pushed apart. We further
use language to ground the embeddings in seman-
tics. Experiments show that the proposed repre-
sentation significantly improves retrieval across
cross-view and cross-scene settings, shows strong
transfer to unseen datasets, enables longer keystep
actions obtained by zero-shot combination of our
atomic embeddings, and shows promising results
on a preliminary robotics manipulation task. We
believe that the proposed approach will benefit
robotic and human-understanding downstream
tasks.
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1. Introduction
Action representation learning aims to learn action rep-
resentations that support downstream tasks such as action
recognition (Carreira & Zisserman, 2017; Bagad & Zisser-
man, 2025a), retrieval (Luo et al., 2025), skill transfer (Xu
et al., 2023), imitation learning (Kareer et al., 2025; Xiong
et al., 2025), pretraining for vision-language action models
(VLA) (Bu et al., 2026), and extended reality applications.
An ideal action learning paradigm must generalize across
changes in viewpoint, scene, and object appearance. In
practice, actions can be represented and learned in different
ways: as supervised latent embeddings learned from labeled
actions (Luo et al., 2025), as unsupervised discovered la-
tents learned without manual labels (Ye et al., 2025), or as
tokens in the text domain such as verbs or short phrases
aligned with video (Chen et al., 2025).

Actions also vary in granularity. Keystep actions (e.g.
checking for damages, cooking omelet, repairing a bike,
unboxing a package) describe longer, higher-level proce-
dures that often correlate strongly with objects, the context
of the scene, and appearance (Grauman et al., 2024). These
higher-level activities can be decomposed into atomic ac-
tions (e.g. pushing, pulling, cutting, placing a box on a
table), which are short interaction-centric primitives, char-
acterized by fine-grained temporal dynamics and contact
patterns. In this work, we present a method to learn a co-
herent, view and scene-invariant atomic action space from
video sequences.

To advance keystep action learning, recent work (Xue &
Grauman, 2023; Grauman et al., 2024; Park et al., 2025)
has focused on view-invariance, which is learning action
representations that align across egocentric and exocentric
viewpoints, often using large-scale multi-view datasets such
as Ego-Exo4D (Grauman et al., 2024). However, when
obtaining view-invariant representations becomes the main
objective, models can rely on static scene content to obtain
representations, performing keypoint matching instead of
learning action dynamics. This is worsened by evaluations
in narrow single-domain subsets, most commonly cooking,
where limited scene diversity allows appearance to dominate.
Consequently, strong quantitative results may not reflect a
real understanding of actions, i.e., models can fail to recover
the same action in differently looking scenes.

Figure 1 illustrates this issue by visualizing retrieval behav-
ior in the Ego-Exo4D validation set, with all scenes included
in the retrieval pool. It shows that recent baselines are over-
adapted to appearance cues. Specifically, prior retrieval
methods often exploit a shortcut by ranking top-k clips ac-
cording to shared scene context, such as layout and objects,
rather than interaction dynamics. This specific failure mode
is most evident in the ego→exo examples retrieved by View-
point Rosetta Stone (Luo et al., 2025) in the third row of
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Figure 2. Zero-shot video-video retrieval results of the methods on
PhyWorld (Kang et al., 2025) dataset. Arrows denote the move-
ment direction in the video, which are the actions. Our method
faithfully represents fine-grained actions as evidenced by the suc-
cessful retrieval, whereas other methods may opt for color and
shape matching without paying attention to movement directions
(row 2), or retrieve partially-correct actions (row 4).

Figure 1. The method may return a hit with a superficially
similar action, such as taking, but it does so by retrieving
clips from the same kitchen and matching static cues such as
the blue bowl and brown cabinets, rather than recognizing
the underlying interaction. As a result, it can miss stronger
dynamic matches that occur in different scenes. These obser-
vations are further strengthened by Figure 2, which shows
similar trends in a simpler dataset in a zero-shot setting. In
this case, the baseline also behaves like a near-static visual
matcher, prioritizing color and shape similarity over the
temporal cues required to distinguish fine-grained actions.

To overcome these issues, we present InvAct, the first
atomic-action embedding model that maps short video
clips into a compact action space while being invariant
to both scene changes and ego–exo viewpoint shifts, yet
remaining discriminative for fine-grained interaction dy-
namics. Unlike prior work that primarily studies viewpoint
alignment for keystep actions, our model explicitly targets
both viewpoint and scene invariance at the level of atomic
actions. We further demonstrate that these atomic-action
embeddings can be composed to support keystep actions
across all ego–exo combinations, enabling substantial trans-
fer across scenes and viewpoints.

Concretely, we train a transformer-based encoder that fuses
pretrained visual features with optical flow maps to produce
a single-token action embedding. During training, instead
of organizing clips directly by visual similarity, we shape
the embedding space around atomic actions. Clips depict-
ing the same action are mapped close together even when
they come from different scenes or viewpoints, whereas
clips from the same scene performing different actions are
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pushed apart to counteract scene-specific bias. We enforce
this structure with contrastive objectives that emphasize in-
teraction dynamics over appearance. Finally, we leverage
sentence and verb-level action labels to anchor the embed-
dings semantically, facilitating meaningful retrieval.

The effectiveness of our method is shown in Figures 1 and 2,
where it retrieves stable, interaction-faithful matches in both
complex and diverse scenes and deliberately simplified re-
trieval settings. Our contributions are as follows:

• To our knowledge, InvAct is the first atomic-action
learning model to tackle both the large viewpoint-
invariance and scene-invariance in a single model,
demonstrated using the Ego-Exo4D dataset.

• Without additional training, we show that keystep-level
representations can be formed by chaining our learned
atomic embeddings, allowing the retrieval of keystep
action out-of-the-box.

• We outperform existing methods, including egocentric-
only models and prior ego-exo alignment approaches,
on video-video retrieval for both atomic actions and
keystep actions, across averaged cross-view and cross-
scene settings, and we show strong generalization to
out-of-domain datasets in zero-shot evaluation. We fur-
ther demonstrate our method’s effectiveness by long-
sequence probing, latent clustering, visual attention,
linguistic alignment analyzes, and a sample down-
stream task on VLA pretraining for robotics.

We believe this unified approach can benefit video pretrain-
ing for both robotics and human action understanding, and
help bridge robot-oriented and human-oriented action learn-
ing. We will release our code and trained models.

2. Related Work
Generalizable representations. Large pretrained back-
bones such as CLIP (Radford et al., 2021), DI-
NOv3 (Siméoni et al., 2025), and TimeSFormer-based ar-
chitectures (Bertasius et al., 2021) provide strong generic
representations of large-scale image–text or self-supervised
training. A recent video-oriented representation learning
work, V-JEPA2 (Assran et al., 2025), further improves tem-
poral modeling, while FlowFeat (Araslanov et al., 2025) em-
phasizes motion-driven features. LiFT (Bagad & Zisserman,
2025a) converts image features into time-sensitive video de-
scriptors by linearizing feature trajectories. However, these
models are not designed to be scene and view-invariant.

Multimodality for action learning. Video–language pre-
training (VLP) methods such as LaViLa (Zhao et al.,
2023) and X-CLIP (Ma et al., 2022) focus on improv-
ing video–text alignment using language supervision and

multi-grained contrastive matching between frame-text. Hi-
erVL (Ashutosh et al., 2023) complements this by learning
hierarchical video–text embeddings that align both clip-
level narrations and long-video summaries. Egocentric VLP
methods like EgoVLPv2 (Lin et al., 2022; Pramanick et al.,
2023) adapt video–text contrastive learning to first-person
data, by mining egocentric-aware positives/negatives and us-
ing stronger cross-modal fusion. VL-JEPA (Chen et al.,
2025) explores predicting text embeddings from videos
rather than generating visual tokens. TARA (Bagad & Zis-
serman, 2025b) adapts multimodal LLMs to time-sensitive
video-text embeddings, focusing on temporal order.

These directions complement ours by improving semantic
grounding through video-text alignment, similar to how we
use atomic labels. However, they do not explicitly enforce
scene and viewpoint invariance at the atomic action level,
and they often inject text into the model, whereas we use
language only through the loss.

View-invariant representation learning. On the ego–exo
side, the Ego-Exo4D benchmark formalizes synchronized
first- and third-person understanding on scale (Grauman
et al., 2024), and works like Viewpoint Rosetta Stone (Luo
et al., 2025) and SUM-L (Wang et al., 2023) pursue view-
invariant alignment in unpaired or weakly paired settings.
AE2 (Xue & Grauman, 2023) learns fine-grained invariance
by temporally aligning ego-exo videos without synchroniza-
tion, BYOV (Park et al., 2025) uses masked ego–exo mod-
eling to encourage cross-view consistency. Seeing Without
Pixels (Xue et al., 2025) reveals that actions can be ob-
served through non-appearance signals like camera motion,
aligning trajectory cues with language.

In contrast, we tackle scene invariance while still satisfying
viewpoint invariance. We also evaluate our method using
all subsets of the Ego-Exo4D validation split, going be-
yond the more constrained subsets or settings used in prior
work (Wang et al., 2023; Xue & Grauman, 2023; Luo et al.,
2025; Park et al., 2025).

Latent atomic action discovery in robotics. LAPA (Ye
et al., 2025) and LAOF (Bu et al., 2025) study latent ac-
tion discovery in embodied settings, learning action ab-
stractions from video with minimal or no action labels.
LAOF also uses optical-flow constraints to stabilize learn-
ing. VILA (Jeong et al., 2026) focuses on supervised view-
invariant latent actions for policy learning. Ko et al. 2024
show another route by extracting action-relevant structure
from videos via flow and depth for policy learning.

These works share our intuition that motion aids in action
learning when appearance varies. However, we learn atomic
actions that stay consistent across viewpoint shifts with com-
plex environments and grounded by language, a setting that
is not commonly studied in such robotics-oriented work.
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3. Method
Our aim is to learn a coherent, view and scene-invariant
atomic action space from video sequences. The resulting em-
beddings provide a strong backbone for downstream tasks,
as evidenced by retrieval and recognition across viewpoints
and environments, while penalizing scene-based shortcuts.

We show that, with appropriate supervision, a single trans-
former can learn such embeddings and generalize well in
zero-shot settings. Moreover, these atomic embeddings can
be combined into keystep-action embeddings in zero-shot
manner. Our framework uses a combination of contrastive
and classification losses between the video and text domains.

3.1. Architecture

Given a video clip v ∈ RT×H×W×3, we first compute the
optical flow as f ∈ R(T−1)×H×W×3. A 3D-CNN tubelet
embedder (Arnab et al., 2021) ϕ(·) then maps f to spatiotem-
poral tokens ϕ(f) ∈ RN×d, where N = (T−1)H8

W
8 . Then,

we prepend a learnable classification token zCLS ∈ Rd, and
process the sequence with a transformer T (Vaswani et al.,
2017) using rotary positional embeddings (Su et al., 2024).
To inject additional semantic cues, we extract frozen fea-
tures D(v) from RGB video and fuse them into T through
cross-attention. The final action representation is the output
CLS token zCLS, on which all losses are applied:

zCLS = T
(
ϕ(f), zCLS,D(v)

)
(1)

The architecture and inference scheme are visualized in Fig-
ure 3. We compute flow with RAFT (Teed & Deng, 2020)
use frame-averaged DINOv3 (Siméoni et al., 2025) for
D(v), and set T = 8. We note that previous work (Luo
et al., 2025; Pramanick et al., 2023) tends to input the text
modality into the inference pipeline, whereas we only utilize
language through losses. This means that our model does
not require text to extract actions during inference.

Figure 3. Architecture of our action extractor method. We first
only train the tubelet embedder and transformer with atomic-action
labels but can later infer atomic-actions and keystep-actions.

3.2. Definitions

Notation. Let S and A denote the sets of scene and action
labels, respectively. A paired ego-exo clip is associated with
a label in the product space S×A. We form our minibatches
via sampling from this product space. We index paired
samples by i and denote their ego and exo embeddings by
gi ∈ Rd and xi ∈ Rd, respectively, which are the zCLS
token outputs of the transformer.

Label types. We train using two kinds of labels: atomic
sentence-level actions (e.g., cutting a tomato on a bench)
and atomic verb-level actions (e.g., cut). For inference, in
addition to atomic labels, we also include keystep sentence-
level actions (e.g., check for any damage or splits in the
tube). Details are provided in the Appendix.

3.3. Losses

Ego-exo view alignment. For each paired sample i, we
align the ego and exo embeddings via the cosine distance:

Lvv =
1

N

N∑
i=1

(
1− ⟨gi, xi⟩

)
(2)

Cross-scene action attraction. For each anchor sample i,
we form a set of positives P(i) that share the same action
label but come from different scenes, and a set of negatives
N (i) that correspond to different actions. We then apply a
multi-positive InfoNCE (Oord et al., 2018) objective in ego:

Lego
att =

1

N

N∑
i=1

− log

∑
p∈P(i)

exp⟨gi, gp⟩∑
k∈P(i)∪N (i)

exp⟨gi, gk⟩
(3)

and define Lexo
att analogously by replacing g with x. The final

attraction loss averages modalities, Latt =
1
2

(
Lego

att + Lexo
att

)
.

Same-scene repulsion. For each anchor sample i, we select
a negative set R(i) consisting of clips from the same scene
but with a different action label. We penalize their similarity
using a 2-way InfoNCE. In ego space:

Lego
rep =

1

N

N∑
i=1

− log
exp⟨gi, gi⟩

exp⟨gi, gi⟩+
∑

r∈R(i)

exp⟨gi, gr⟩
(4)

and Lexo
rep is defined analogously by replacing g with x. Then

both modalities are averaged Lrep = 1
2

(
Lego

rep + Lexo
rep

)
.

Cross-scene action attraction and same-scene repulsion to-
gether help discouraging learning shortcuts, especially re-
garding appearance similarity due to scene sharing, and
encourage learning a rich atomic action space. In particu-
lar, repulsion from the same-scene was not investigated in
previous work such as (Luo et al., 2025).
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Atomic sentence-level text-video alignment. Let tatom
i ∈

Rk be the atomic sentence-level pooled CLIP (Radford et al.,
2021) text embedding paired with sample i, and let {gi, xi}
denote the corresponding video embeddings for ego and
exo, respectively. We use a symmetric CLIP-style InfoNCE
loss with index-matched positives:

Lego
text = − 1

2N

N∑
i=1

[
log

exp⟨gi, tatom
i ⟩∑N

j=1 exp⟨gi, tatom
j ⟩

+ log
exp⟨gi, tatom

i ⟩∑N
j=1 exp⟨gj , tatom

i ⟩

]
(5)

and define Lexo
text by replacing g with x. We then average two

losses, Ltext =
1
2

(
Lego

text + Lexo
text

)
.

Atomic verb-level text-video alignment. For samples with
verb supervision, we predict logits with a shared head h(·)
and minimize the cross-entropy over verb classes. Let yi ∈
{1, . . . ,K} be the verb class index (one-hot yi ∈ {0, 1}K ),
and let ℓgi = h(gi) ∈ RK , ℓxi = h(xi) ∈ RK . Then

LCE = − 1

N

N∑
i=1

[
log

exp ℓgi,yi∑K
c=1 exp ℓ

g
i,c

+log
exp ℓxi,yi∑K
c=1 exp ℓ

x
i,c

]
(6)

The final loss is a weighted sum of all terms. More details
are reserved to the Appendix.

L = λvvLvv +λattLatt +λrepLrep +λtextLtext +λCELCE (7)

4. Experiments
In this section, we describe the datasets and training setup,
the baselines used, and a broad set of experiments includ-
ing retrieval, clustering, probing, attention visualization,
language analysis, and a robotic downstream task.

4.1. Datasets and Training

We utilize Ego-Exo4D (Grauman et al., 2024) for training
and main evaluation. Specifically, we leverage the portion
downscaled takes/448, which has time-synchronized
ego-exo clips with keystep and atomic labels. Keystep labels
span longer temporal windows than atomic actions, where
each keystep describes the overall activity in a segment, and
its timeframe typically contains multiple atomic action la-
bels. Unlike recent cross-view prior works (Luo et al., 2025;
Wang et al., 2023), which often report results only on the
cooking subset, we evaluate the complete Ego-Exo4D val-
idation split combining the {cooking, health, bike}
subsets, using their shared atomic-action labels. In total, the
train set has 30,615, and the validation set has 8,961 videos.

For zero-shot evaluation, we employ Charades-Ego (Sig-
urdsson et al., 2018), Something-Something v2 (Goyal

et al., 2017), PhyWorld (Kang et al., 2025), and NTU
RGB+D (Liu et al., 2020; Shahroudy et al., 2016) datasets.
Details for datasets and training are given in the Appendix.

4.2. Baselines

All baselines evaluated are listed in Table 1. We include
VI Encoder, the official baseline of Ego-Exo4D, and its
Ego4D (Grauman et al., 2022) TimeSFormer variant. View-
point Rosetta and SUM-L follow a different backbone, add
ego–exo and language alignment components, together with
pseudo-paired/unpaired data. We also report results for ego-
centric models (LaViLa, EgoVLP, EgoVLPv2). Finally,
we include general-purpose pretrained features (CLIP, DI-
NOv3, VJEPA-2, FlowFeat, LiFT) and robotics-oriented
works like LAPA. We omit AE2 and BYOV because their
evaluations are scenario-specific, i.e. a single checkpoint per
task (e.g. breaking eggs, or pouring milk, etc.) rather than a
unified retrieval setting. More details are in the Appendix.

4.3. Downstream Experiments

To understand whether InvAct captures action semantics
rather than scene or object cues, we test under progressively
harder downstream setups. These experiments assess fine-
grained atomic action retrieval across views and scenes,
generalization to unseen datasets, composition into higher-
level keysteps without additional training, and using the
actions in pretraining of VLAs for robotics manipulation.

Atomic action retrieval. Many cross-view methods focus
on matching the same action across viewpoints within the
same scene and time, where correspondence cues can be
highly informative. For atomic actions, we instead empha-
size action-level matching between viewpoints and scenes,
even when objects, context, and timelines differ. We there-
fore report cross-view and cross-scene verb-level atomic-
action hit-rates and visuals in Table 1 and Figure 4.

Table 1 shows that our method significantly outperforms
cross-view alignment methods such as Viewpoint Rosetta,
single-view methods such as EgoVLPv2, robotics-focused
approaches such as LAPA, and general-purpose feature ex-
tractors such as V-JEPA 2 and FlowFeat.

Figure 4 also qualitatively shows that our embedding space
supports reliable action retrieval in all ego-exo queries and
gallery combinations. In these examples, cross-view meth-
ods often over-rely on appearance cues such as desks and pa-
pers and omit fine-grained actions, while single-view meth-
ods tend to fail when the same action is observed cross-view.
General-purpose representations can capture coarse motion
patterns but still miss the underlying action.

Zero-shot retrieval. We also evaluate our embeddings on
unseen datasets such as SSV2, Charades-Ego, PhyWorld,
and NTU RGB+D. Table 2 and Figures 2, 5 and 6 show that

5



InvAct: View and Scene-invariant Atomic Action Learning from Videos
Ou

rs
Ro

se
"a

SU
M
-L

Eg
oV

LP
Fl
ow

Fe
at

Li
FT

exo→egoego→exoego→ego exo→exo

Q
ue
ry

Qu
er
y

Qu
er
y

Qu
er
y

Qu
er
y

Figure 4. Comparison of different methods on Ego-Exo4D, on atomic-action cross-scene video-video retrieval task. First columns are
query videos, and others are top-3 best matches. Correct and incorrect hits are visualized with green and red, respectively.

Table 1. Video-video retrieval hit-rates of methods in the Ego-Exo4D validation set, for both atomic action hit-rates and keystep action
hit-rates. g and x denote ego and exo, respectively. For keystep actions on our method, we re-purpose the atomic action checkpoint
without finetuning. The best three results are shown in bold, underlined, and in italic, respectively.

Atomic action hit-rates (@10) Keystep action hit-rates (@10)

Cross-scene (↑) Cross-view (↑) Cross-scene (↑) Cross-view (↑)

Method g→g x→x avg. g→x x→g avg. g→g x→x avg. g→x x→g avg.

Random 3.04 3.01 3.02 2.15 3.70 2.92 6.23 7.35 6.79 6.59 6.72 6.65

G
en

er
al

em
be

ds

CLIP 16.01 15.33 15.67 14.03 16.25 15.14 26.76 20.47 23.61 17.71 17.68 17.70
DINOv3 19.08 15.11 17.09 13.60 16.32 14.96 28.50 20.40 24.45 24.43 19.42 21.93

V-JEPA 2 17.83 14.05 15.94 15.32 18.40 16.86 33.75 21.55 27.65 14.40 17.45 15.93
FlowFeat 23.56 24.04 23.80 19.70 23.54 21.62 21.25 15.51 18.38 11.84 12.89 12.37

LiFT 27.84 23.15 25.50 21.71 27.08 24.39 25.88 19.02 22.45 20.79 16.23 18.51

Si
ng

le
vi

ew

LAPA 25.24 26.52 25.88 15.96 13.82 14.89 13.58 15.28 14.43 15.09 13.94 14.51
TimeSFormer 26.21 20.73 23.47 19.55 23.87 21.71 30.50 19.84 25.17 17.55 15.97 16.76

LaViLa 28.52 24.25 26.39 23.29 23.84 23.57 41.26 17.68 29.47 20.79 16.43 18.61
EgoVLP 29.61 21.77 25.69 22.34 23.52 22.93 49.82 26.01 37.91 29.94 22.53 26.23

EgoVLPv2 29.35 22.00 25.67 21.88 25.30 23.59 48.11 23.84 35.98 27.55 22.43 24.99

M
ul

ti
vi

ew

VI Encoder 19.95 18.64 19.30 19.01 20.40 19.71 19.71 16.17 17.94 16.63 17.22 16.93
SUM-L 29.58 23.33 26.46 22.29 23.27 22.78 36.04 14.73 25.39 15.71 9.81 12.76
Rosetta 22.38 20.95 21.66 21.66 21.21 21.43 43.82 34.42 39.12 39.94 34.77 37.35

Ours 33.68 30.53 32.10 31.23 30.12 30.68 44.18 38.54 41.36 36.34 35.62 35.98
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our method outperforms other approaches and consistently
retrieves the same fine-grained actions across diverse envi-
ronments, both in ego→ego and exo→exo. The rest of the
zero-shot visual results are reserved to the Appendix.

something 
falling like a 

feather or 
paper

Query Top-3 matches

tearing 
something into 

two pieces 

tearing 
something just 

a li"le bit 

Figure 5. Zero-shot qualitative video-video retrieval results of our
method on SSV2. Even though the objects are similar, our method
can distinguish between different fine-grained actions.

Table 2. Zero-shot video-video retrieval action top-10 hit-rates of
cross-view methods. Ours can generalize to other datasets better.

SSV2 Charades NTU

VI Encoder 23.68 15.60 36.61
SUM-L 24.92 13.88 52.70
Rosetta 24.96 17.98 58.79

Ours 29.00 16.45 60.69

Combining atomic actions for keystep retrieval. Each
keystep spans a longer time window and typically contains a
sequence of atomic actions. We therefore reuse our atomic-
action transformer for keystep-level video-video retrieval
without additional training. For each keystep segment, we
extract the atomic-action video embeddings and temporally
average them to obtain a single keystep representation. As
shown in Table 1, this simple repurposing is highly effective,
matching methods trained directly on keystep labels such as
Viewpoint Rosetta and surpassing all other baselines overall.
Notably, ours shows the smallest performance change when
switching between atomic and keystep representations.

Pretraining VLA with actions for robotics manipulation.
We further evaluate our action embeddings on simulated
robotic manipulation tasks. Following LAPA, we use latent
actions for VLA pretraining and measure task success rates.
Specifically, we pretrain OpenVLA (Kim et al., 2024) with
atomic actions derived from both LAPA and our method
on the SSV2 dataset, and then post-train on LIBERO (Liu
et al., 2023) using its task labels. Performance is evaluated
on the LIBERO-10 benchmark in simulation.

As shown in Figures 7 and 8, our embedding space im-
proves VLA performance and increases success rates on
downstream robotic tasks. Specifically, baseline achieves

34% success rate, LAPA improves +10% and ours improve
+18% over the baseline. These results indicate that our
representations can help bridge human-centric action under-
standing and robot-centric action learning. Full details can
be found in the Appendix.

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 avg0.0

0.5

1.0

Av
g s

ucc
ess

LIBERO-10 per-task success rates
No pretraining
with LAPA
with ours

Figure 7. Effect of pretraining with atomic actions on LIBERO-10
tabletop manipulation test suite. Like LAPA, our action latents
also improve the task success rate.

Figure 8. A rollout example on LIBERO-10 task #10: put the
‘yellow and white mug’ in the microwave and close it.

4.4. Understanding the Action Representation

Beyond downstream performance, we analyze what informa-
tion our learned representation encodes and how it structures
action semantics. We examine its temporal consistency over
long action sequences, invariance to scene and viewpoint,
alignment with linguistic verb semantics, and the visual cues
it attends to in the transformer layers. Additional details,
results, and visualization can be found in the Appendix.

Atomic action probing. We evaluate verb recognition us-
ing the trained linear probe with LCE loss, applied to longer
videos containing sequences of atomic actions (see Fig-
ure 9). Although our method performs chunk-wise infer-
ence without explicit temporal memory or autoregressive
decoding, the probe remains temporally consistent and cap-
tures meaningful action transitions. This indicates that our
representation supports longer-range atomic action chains.

closewalkpullputopen

pick updroptakeputtouch

droppick upputplacetake out
Figure 9. Atomic action probing results of our method on Ego-
Exo4D. Our method can support estimating multiple atomic se-
quences from longer videos.
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Query Top-k matches

jump 
up

walking 
apart

Figure 6. Zero-shot video-video retrieval results on NTU RGB+D dataset of our method. Our action embeddings can match the
same-labeled actions under different environments and viewpoints.

Latent clustering inspection. We extract atomic-action
embeddings from Ego-Exo4D and visualize them using
t-SNE (van der Maaten & Hinton, 2008) in Figure 10.
EgoVLPv2 clusters embeddings primarily by viewpoint,
while Rosetta clusters largely by scene identity. In contrast,
ours are less scene-dependent and exhibit more uniformity
across scenes.

OursRose"aEgoVLPv2

Figure 10. We visualize embeddings in all scenes+all actions.
Colors denote different scenes. Prior methods cluster largely by
scene or viewpoint, while our embeddings are less scene-dependent
and provide a more homogeneous distribution.

Semantic alignment. We assess how well our atomic-action
embeddings capture linguistic verb similarity by compar-
ing their induced verb–verb similarity structure with Word-
Net (Miller, 1995). WordNet provides a lexical taxonomy
from which we derive a reference similarity between verbs
based on their semantic relatedness. As shown in Figure 11,
we group Ego-Exo4D validation embeddings by ground-
truth atomic-action verbs and compute verb prototypes. For
each method, we then derive a verb–verb similarity matrix
and measure its Spearman correlation with the WordNet sim-
ilarity matrix. Our method achieves the highest alignment,
indicating better preservation of relative verb semantics.

Cross-attention inspection. We visualize cross-attention
heatmaps for ego-exo inputs in Figure 12. Specifically, we
visualize the pooled cross-attention between the learned CLS
token and the injected DINOv3 tokens, projected onto the
corresponding RGB frames. The results show our actions
attend primarily to interaction regions and motion cues.

Ours
LaViLa

RosettaSUM-L
EgoVLPv2

EgoVLP
V-JEPA2 CLIP

FlowFeat

TimeSFormer
DINOv3

VI Encoder0.0

0.2

Pai
r S

pe
arm

an

0.3
48

0.2
72

0.2
49

0.2
31

0.1
97

0.1
73

0.1
50

0.1
44

0.1
36

0.1
34

0.1
33

0.1
21

WordNet Alignment

Figure 11. Spearman correlation between each model’s pairwise
action-similarity matrix and the WordNet ground-truth similarity
matrix. Our embeddings are more linguistically aligned.

Ego video Attention Exo video Attention

Figure 12. Cross-attention heatmaps from our model. Brighter
regions indicate stronger CLS token attention.

5. Conclusion
We present InvAct, the first view- and scene-invariant
method for atomic action learning. We show that prior
view-invariant approaches can still overfit to appearance,
and we mitigate this by carefully combining our training
objectives and inputs. Our method achieves competitive per-
formance in keystep and atomic action retrieval, supports
zero-shot transfer, and we analyze the learned representa-
tions via probing, language alignment, attention maps, and
a robotic downstream demonstration. We view this as a
promising step toward unifying robot-oriented and human-
oriented action learning.

Limitations and future work. We currently embed atomic
clips independently, so exploring autoregressive variants is a
natural next step. It will also be important to scale to larger
data (e.g., Action100 (Chen et al., 2026)) and eventually
unlabeled video. Finally, beyond retrieval and verb-classifier
probing, it would be interesting to adapt token-level video-
to-text decoding methods like VL-JEPA (Chen et al., 2025).
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6. Potential Broader Impact
This paper advances action representation learning, with
the goal of improving generalization across viewpoints and
scenes, and aims to close the gap between robotics and
human-understanding domains. Better action embeddings
can help in applications like robotics, assistive systems,
and video understanding. Our work does not involve new
data collection or human-subject studies, and we train on
existing and verified datasets. We encourage careful use and
evaluation.
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and Schmid, C. Vivit: A video vision transformer. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 6836–6846, 2021.

Ashutosh, K., Girdhar, R., Torresani, L., and Grauman, K.
HierVL: Learning hierarchical video-language embed-
dings. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 23066–
23078, 2023.

Assran, M., Bardes, A., Fan, D., Garrido, Q., Howes, R.,
Muckley, M., Rizvi, A., Roberts, C., Sinha, K., Zholus,
A., et al. V-JEPA 2: Self-supervised video models enable
understanding, prediction and planning. arXiv preprint
arXiv:2506.09985, 2025.

Bagad, P. and Zisserman, A. Chirality in action: Time-aware
video representation learning by latent straightening. In
The Thirty-ninth Annual Conference on Neural Informa-
tion Processing Systems, 2025a.

Bagad, P. and Zisserman, A. TARA: Simple and efficient
time aware retrieval adaptation of mllms for video under-
standing. arXiv preprint arXiv:2512.13511, 2025b.

Bain, M., Nagrani, A., Varol, G., and Zisserman, A. Frozen
in time: A joint video and image encoder for end-to-end
retrieval. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1728–1738, 2021.

Bertasius, G., Wang, H., and Torresani, L. Is space-time
attention all you need for video understanding? In Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 813–824, 2021.

Bu, Q., Yang, Y., Cai, J., Gao, S., Ren, G., Yao, M., Luo,
P., and Li, H. Learning to act anywhere with task-centric

latent actions. In Proceedings of Robotics: Science and
Systems (RSS), 2026.

Bu, X., Lyu, J., Sun, F., Yang, R., Ma, Z., and Li, W. LAOF:
Robust latent action learning with optical flow constraints.
arXiv preprint arXiv:2511.16407, 2025.

Carreira, J. and Zisserman, A. Quo vadis, action recogni-
tion? a new model and the kinetics dataset. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 6299–6308, 2017.

Chen, D., Shukor, M., Moutakanni, T., Chung, W., Yu,
J., Kasarla, T., Bolourchi, A., LeCun, Y., and Fung, P.
VL-JEPA: Joint embedding predictive architecture for
vision-language. arXiv preprint arXiv:2512.10942, 2025.

Chen, D., Kasarla, T., Bang, Y., Shukor, M., Chung, W.,
Yu, J., Bolourchi, A., Moutakanni, T., and Fung, P. Ac-
tion100M: A large-scale video action dataset. arXiv
preprint arXiv:2601.10592, 2026.

Feichtenhofer, C., Fan, H., Malik, J., and He, K. Slowfast
networks for video recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 6202–6211, 2019.

Goyal, R., Ebrahimi Kahou, S., Michalski, V., Materzynska,
J., Westphal, S., Kim, H., Haenel, V., Fruend, I., Yianilos,
P., Mueller-Freitag, M., et al. The ”something something”
video database for learning and evaluating visual common
sense. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5842–5850, 2017.

Grauman, K., Westbury, A., Byrne, E., Chavis, Z., Furnari,
A., Girdhar, R., Hamburger, J., Jiang, H., Liu, M., Liu,
X., et al. Ego4D: Around the world in 3,000 hours of
egocentric video. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
18995–19012, 2022.

Grauman, K., Westbury, A., Torresani, L., Kitani, K., Ma-
lik, J., Afouras, T., Ashutosh, K., Baiyya, V., Bansal, S.,
Boote, B., et al. Ego-Exo4D: Understanding skilled hu-
man activity from first-and third-person perspectives. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 19383–19400, 2024.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. LoRA: Low-rank adaptation
of large language models. In International Conference
on Learning Representations, 2022.

Jeong, Y., Chun, J., and Kim, T. Learning to act ro-
bustly with view-invariant latent actions. arXiv preprint
arXiv:2601.02994, 2026.

9



InvAct: View and Scene-invariant Atomic Action Learning from Videos

Kang, B., Yue, Y., Lu, R., Lin, Z., Zhao, Y., Wang, K.,
Huang, G., and Feng, J. How far is video generation
from world model: A physical law perspective. In Forty-
second International Conference on Machine Learning,
2025.

Kareer, S., Patel, D., Punamiya, R., Mathur, P., Cheng, S.,
Wang, C., Hoffman, J., and Xu, D. Egomimic: Scaling
imitation learning via egocentric video. In 2025 IEEE
International Conference on Robotics and Automation,
pp. 13226–13233. IEEE, 2025.

Kim, M. J., Pertsch, K., Karamcheti, S., Xiao, T., Balakr-
ishna, A., Nair, S., Rafailov, R., Foster, E. P., Sanketi,
P. R., Vuong, Q., Kollar, T., Burchfiel, B., Tedrake, R.,
Sadigh, D., Levine, S., Liang, P., and Finn, C. OpenVLA:
An open-source vision-language-action model. In 8th
Annual Conference on Robot Learning, 2024.

Ko, P.-C., Mao, J., Du, Y., Sun, S.-H., and Tenenbaum,
J. B. Learning to act from actionless videos through
dense correspondences. In The Twelfth International
Conference on Learning Representations, 2024.

Lin, K. Q., Wang, J., Soldan, M., Wray, M., Yan, R., Xu,
E. Z., Gao, D., Tu, R.-C., Zhao, W., Kong, W., et al. Ego-
centric video-language pretraining. Advances in Neural
Information Processing Systems, 35:7575–7586, 2022.

Liu, B., Zhu, Y., Gao, C., Feng, Y., Liu, Q., Zhu, Y., and
Stone, P. Libero: Benchmarking knowledge transfer for
lifelong robot learning. Advances in Neural Information
Processing Systems, 36:44776–44791, 2023.

Liu, J., Shahroudy, A., Perez, M., Wang, G., Duan, L.-Y.,
and Kot, A. C. NTU RGB+D 120: A large-scale bench-
mark for 3d human activity understanding. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 42
(10):2684–2701, 2020.

Luo, M., Xue, Z., Dimakis, A., and Grauman, K. Viewpoint
Rosetta Stone: unlocking unpaired ego-exo videos for
view-invariant representation learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 15802–15812, June 2025.

Ma, Y., Xu, G., Sun, X., Yan, M., Zhang, J., and Ji, R.
X-CLIP: End-to-end multi-grained contrastive learning
for video-text retrieval. In Proceedings of the 30th ACM
international conference on multimedia, pp. 638–647,
2022.

Miller, G. A. WordNet: a lexical database for english.
Communications of the ACM, 38(11):39–41, November
1995. ISSN 0001-0782.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Oquab, M., Darcet, T., Moutakanni, T., Vo, H. V.,
Szafraniec, M., Khalidov, V., Fernandez, P., HAZIZA,
D., Massa, F., El-Nouby, A., Assran, M., Ballas, N.,
Galuba, W., Howes, R., Huang, P.-Y., Li, S.-W., Misra,
I., Rabbat, M., Sharma, V., Synnaeve, G., Xu, H., Jegou,
H., Mairal, J., Labatut, P., Joulin, A., and Bojanowski,
P. DINOv2: Learning robust visual features without su-
pervision. Transactions on Machine Learning Research,
2024. ISSN 2835-8856.

Park, J., Lee, J., and Sohn, K. Bootstrap your own views:
Masked ego-exo modeling for fine-grained view-invariant
video representations. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 13661–13670, June 2025.

Pramanick, S., Song, Y., Nag, S., Lin, K. Q., Shah, H.,
Shou, M. Z., Chellappa, R., and Zhang, P. EgoVLPv2:
Egocentric video-language pre-training with fusion in the
backbone. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5285–5297, 2023.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PmLR, 2021.

Shahroudy, A., Liu, J., Ng, T.-T., and Wang, G. NTU
RGB+D: A large scale dataset for 3d human activity
analysis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 1010–
1019, 2016.

Sigurdsson, G. A., Gupta, A., Schmid, C., Farhadi, A.,
and Alahari, K. Charades-ego: A large-scale dataset
of paired third and first person videos. arXiv preprint
arXiv:1804.09626, 2018.

Siméoni, O., Vo, H. V., Seitzer, M., Baldassarre, F., Oquab,
M., Jose, C., Khalidov, V., Szafraniec, M., Yi, S.,
Ramamonjisoa, M., et al. DINOv3. arXiv preprint
arXiv:2508.10104, 2025.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

Teed, Z. and Deng, J. RAFT: Recurrent all-pairs field
transforms for optical flow. In European Conference
on Computer Vision, pp. 402–419. Springer International
Publishing, 2020.

van der Maaten, L. and Hinton, G. Visualizing data using
t-sne. Journal of Machine Learning Research, 9(86):
2579–2605, 2008.

10



InvAct: View and Scene-invariant Atomic Action Learning from Videos

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, volume 30, 2017.

Wang, Q., Zhao, L., Yuan, L., Liu, T., and Peng, X. Learning
from semantic alignment between unpaired multiviews
for egocentric video recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 3307–3317, 2023.

Xiong, H., Xu, X., Wu, J., Hou, Y., Bohg, J., and Song,
S. Vision in action: Learning active perception from
human demonstrations. In 9th Annual Conference on
Robot Learning, 2025.

Xu, M., Xu, Z., Chi, C., Veloso, M., and Song, S. Xskill:
Cross embodiment skill discovery. In 7th Annual Confer-
ence on Robot Learning, pp. 3536–3555, 2023.

Xue, Z., Grauman, K., Damen, D., Zisserman, A., and
Han, T. Seeing without pixels: Perception from camera
trajectories. arXiv preprint arXiv:2511.21681, 2025.

Xue, Z. S. and Grauman, K. Learning fine-grained view-
invariant representations from unpaired ego-exo videos
via temporal alignment. Advances in Neural Information
Processing Systems, 36:53688–53710, 2023.

Ye, S., Jang, J., Jeon, B., Joo, S. J., Yang, J., Peng, B.,
Mandlekar, A., Tan, R., Chao, Y.-W., Lin, B. Y., Liden,
L., Lee, K., Gao, J., Zettlemoyer, L., Fox, D., and Seo, M.
Latent action pretraining from videos. In The Thirteenth
International Conference on Learning Representations,
2025.
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Appendix
In the Appendix Section A, we provide additional visuals
for zero-shot and in-domain retrieval results, action prob-
ing, attention maps visualization, and latent clustering. For
quantitative results, we discuss same-scene fractions in re-
trieval sets for the baseline method and ours, and provide
an extensive experiment comparing losses, input types, and
training paradigms. We also give details about VLA finetun-
ing experiments. In Section B, we detail the training setup,
utilized datasets and baseline configurations.

A. Additional Results
A.1. Retrieval and probing

We show additional results in zero-shot retrieval in Fig-
ures 13 and 18, elaborate on the performance gap between
all-scenes and cross-scenes in Figure 14 for the baseline
Viewpoint Rosetta, show verb-level atomic-action probing
in Figure 17, and ego-exo retrieval in Figures 19 to 22.

rolling 
something on a 

#at surface

Query Top-3 matches

scooping up 
something with 

something

pu"ing a cup/
glass/bo"le 
somewhere

wash a dish/
dishes

moving 
something up 

turning the 
camera right 

$lming 
something

Figure 13. Zero-shot qualitative video-video retrieval results of
our method on SSV2 and Charades-Ego datasets. Our method can
successfully extract the actions and populate top-3 matches.

A.2. Attention maps and clustering

We provide additional results on attention map visualiza-
tion in Figure 15, along with more t-SNE visualizations in
Figure 16.

Figure 14. Scores calculated on Ego-Exo4D validation dataset.
Same-scene fraction is defined as the proportion of top-k matches
drawn from the same scene as the query. The baseline method is
heavily biased toward same-scene retrievals across all k, whereas
our method substantially reduces this bias while maintaining strong
retrieval performance.

Ego Attention Exo Attention

Figure 15. Cross-attention heatmaps from our model. Brighter
regions are where CLS tokens attend the most. Our action embed-
dings attend to interaction regions the most.
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Figure 16. We visualize embeddings in all scenes/all actions (row
1), and a single scene for the top-5 actions (row 2). Different
colors denote different scenes in row 1, and different colors denote
different verbs in row 2. Prior methods cluster largely by scene
or viewpoint, while our embeddings are less scene-dependent and
preserve better action grouping across scenes and views.
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A.3. VLA pretraining for robotics manipulation task

We follow the same three-stage pipeline as LAPA (Ye et al.,
2025): (1) learn a latent action space, (2) pretrain a vi-
sion–language–action (VLA) model to predict these latent
actions, and (3) post-train the VLA to output robot control
actions for simulation. We use OpenVLA (Kim et al., 2024)
as the VLA backbone and LIBERO (Liu et al., 2023) for
robot post-training and evaluation.

Stage 1: Latent actions. We obtain two latent spaces:
LAPA’s pretrained LAQ model trained on Something-
Something V2 (SSV2) (Goyal et al., 2017), and our atomic-
action model trained on Ego-Exo4D (Grauman et al., 2024).

Stage 2: VLA pretraining with latents. We finetune Open-
VLA using 32-rank adapters (Hu et al., 2022) with batch
size 32 on SSV2. Inputs are video frames and the tokenized
action text description (e.g., rolling something on a flat sur-
face). We attach a single linear head that maps transformer
tokens to the latent action vector and train the VLA to match
either the non-quantized LAQ encoder outputs or our latent
actions. Both variants are trained for 25,000 steps on a
single H200 GPU.

Stage 3: Robot post-training. We remove the latent-action
head, add a new 32-rank LoRA, and finetune on LIBERO
to predict continuous robot embodiment actions used by the
simulator controller. We add a new trainable output layer
that maps transformer tokens to robot actions. In the end,
we train three VLA models: (i) no latent pretraining, (ii)
latent-pretrained with LAPA, and (iii) latent-pretrained with
our embeddings. All use batch size 32 and are trained for
50,000 steps on a single H200 GPU.

Evaluation. We report the average success on the LIBERO-
10 test suite with three trained models. For each of the 10
tasks, we run 20 trials and average success rates across tasks.
The visuals for the trials per task are given in Figures 23
and 24. Each row in the figures describes a task, totaling
up to 10 tasks. The task goals are given in text, and the
locations of the objects are randomized per trial.

The task goals are given:

1. put both the alphabet soup and the
tomato sauce in the basket

2. put both the cream cheese box and the
butter in the basket

3. turn on the stove and put the moka pot
on it

4. put the black bowl in the bottom drawer
of the cabinet and close it

5. put the white mug on the left plate
and put the yellow and white mug on the
right plate

6. pick up the book and place it in the

back compartment of the caddy
7. put the white mug on the plate and put

the chocolate pudding to the right of
the plate

8. put both the alphabet soup and the cream
cheese box in the basket

9. put both moka pots on the stove
10. put the yellow and white mug in the

microwave and close it

A.4. Hyperparameter ablation

We perform an extensive ablation with regard to training,
input types, and losses in Table 3. We train for fewer itera-
tions for ablation models and train the best model for twice
the iterations as our final checkpoint.

Table 3. Video-video retrieval atomic action hit-rates of our
method, in all scenes of Ego-Exo4D validation set. CE and CLR
denote cross-entropy and contrastive learning, respectively.

Cross-scene (↑) Cross-view (↑)

g→g x→x avg. g→x x→g avg.

Training paradigm
CLRverb 24.04 23.41 23.72 18.87 22.44 20.65

CEverb 23.70 24.17 23.93 23.47 25.67 24.57
CLRatom 26.82 24.41 25.61 25.99 24.90 25.45

CEverb+CLRatom 27.17 27.75 27.46 27.18 27.74 27.46

Losses
Text alignment 26.82 24.41 25.61 25.99 24.90 25.45

+View invariance 28.30 24.53 26.41 27.15 27.18 27.16
+Action attract 29.55 24.32 26.93 25.09 25.80 25.45

+Scene repel 29.72 26.67 28.20 27.06 27.23 27.14

Input modality
RGB 24.44 22.87 23.65 24.20 24.45 24.32
Flow 24.18 23.36 23.77 22.28 23.91 23.05

RGB+flow 25.45 24.46 25.96 24.06 24.88 24.47
CLIP+flow 29.72 26.67 28.20 27.06 27.23 27.14

DINOv3+flow 31.57 28.92 30.25 29.86 29.17 29.52

Trained longer 33.68 30.53 32.10 31.23 30.12 30.68

Training paradigm. We compare verb-level and sentence-
level (atomic) supervision under contrastive (CLR) and
cross-entropy (CE) objectives. Verb-level CLR performs
poorly on cross-view retrieval, suggesting that coarse verb
labels provide an unstable contrastive signal at our batch
sizes. Switching to verb-level CE substantially improves
cross-view performance (+19.0%). Using sentence-level
atomic captions with CLR is overall stronger: CLRatom im-
proves the cross-scene and cross-view averages over CEverb
by +7.0% and +3.6%, respectively. Finally, combining
the two losses CEverb + CLRatom yields the best results, in-
creasing CLRatom by +7.2% (cross-scene) and +7.9% (cross-
view), indicating that the two objectives are complementary.

Losses. Starting from text alignment (CLRatom), adding
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Figure 17. Qualitative atomic action probing results of our method on Ego-Exo4D validation set, for ego and exo videos. Despite not
being autoregressive or not having context memory, our method can successfully support longer-range atomic sequences.

Query Top-8 matches

falling 
down

jump up

walking 
apart

walking 
towards

Figure 18. Zero-shot video-video retrieval results on NTU RGB+D dataset of our method. Our action embeddings can match the
same-labeled actions, with different environments and camera viewpoints.

view-invariance improves both cross-scene and cross-view
retrieval, with a larger gain on cross-view (+6.7%). Adding
action attract further improves the cross-scene (+5.2%), but
does not improve the cross-view on average. This is ex-
pected since action-attract promotes cross-scene consistency
by tightening action clusters, yet without an explicit repel
component it can over-collapse representations and disturb
viewpoint-specific structure. Finally, adding scene repel re-
covers and yields the strongest overall results, boosting the
cross-scene (+10.1%) and the cross-view averages (+6.6%)
over the base case.

Input modality. RGB-only features perform well for cross-
view retrieval, but they are largely driven by appearance,
which transfers less reliably across scenes. Optical flow
provides a complementary motion prior, yielding modest

gains in cross-scene retrieval (+2.1% on the hardest split,
+0.5% on the cross-scene average). However, flow alone
degrades cross-view performance (-5.2%), indicating that
motion is informative but insufficient for ego–exo matching.
Combining RGB and flow mitigates these failure modes
(+9.8% cross-scene avg., +0.6% cross-view avg. over RGB).
Using frozen foundation embeddings as guidance further
improves: CLIP+flow increases the cross-scene and cross-
view averages by +19.2% and +11.6%, and DINOv3+flow
achieves the best gains (+27.9% and +21.4%). In contrast to
approaches that fine-tune pretrained CLIP image encoders as
their backbone (Luo et al., 2025; Xue & Grauman, 2023), we
only use the output of such pretrained encoders as semantic
guidance via cross-attention.
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Figure 19. Video-video cross-scene ego-ego retrieval results on
Ego-Exo4D dataset. First column is the query video, and other
columns are top-3 hits.

Figure 20. Video-video cross-scene ego-exo retrieval results on
Ego-Exo4D dataset. First column is the query video, and other
columns are top-3 hits.
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Figure 21. Video-video cross-scene exo-ego retrieval results on
Ego-Exo4D dataset. First column is the query video, and other
columns are top-3 hits.

Figure 22. Video-video cross-scene exo-exo retrieval results on
Ego-Exo4D dataset. First column is the query video, and other
columns are top-3 hits.
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Figure 23. Successful runs on LIBERO-10 evaluation suite. Each
row is a task. We display 4 evenly subsampled frames from the
simulation output video in each row.

Figure 24. Failed runs on LIBERO-10 evaluation suite. Each
row is a task. We display 4 evenly subsampled frames from the
simulation output video in each row.
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B. Implementation and Evaluation Details
B.1. Training

Training hyperparameters. We train our method, initial-
ized from random weights, distributed on 4×H200 GPUs for
50,000 steps, with bf16 mixed precision, using AdamW op-
timizer and constant learning rate of 1e-4. The loss hyperpa-
rameters are λvv = 0.5, λCE = 0.5, λatt = 1.0, λrep = 1.0.

Batch sampling. Each minibatch has 4 ego-exo time-
synchronized video tuples, resulting in 8 videos per mini-
batch. Concretely, each minibatch is a quadruplet containing
two actions from the set A={A1,A2} and three scenes from
the set S={S1,S2,S3}. We opt for the layout [S1A1, S2A1,
S3A1, S3A2] ⊂ S × A. The sets A and S are random
subsets of the whole Ego-Exo4D training split for each it-
eration; therefore, the elements in A and S differ in each
sampling operation. Figure 25 visualizes a minibatch, with
atomic verb and atomic sentence labels.

taps the glass jar 
on the rim of the 

grey bowl with her 
right hand

taps the 
mannequin’s 

shoulders with 
both her hands

taps the dropper 
in his right hand 

on the table

places the items 
in his right hand 

on a table

ego

exo

[S1A1] [S2A1] [S3A1] [S3A2]

Figure 25. A sample minibatch. Verb-level atomic-action labels
are given in blue, and sentence-level atomic-action labels are given
in black colors, respectively.

B.2. Datasets

Ego-Exo4D. For our main experiments, we train and
evaluate in Ego-Exo4D (Grauman et al., 2024) using the
downscaled takes/448 subset of time-synchronized ego–
exo clips annotated with both keysteps and atomic actions.
Keysteps label longer temporal segments that capture the
overall activity, and each keystep window typically contains
a sequence of finer-grained atomic-action labels. We train
only on atomic-action labels and evaluate both atomic-
action and keystep-action labels. In contrast to previous
cross-view works (Luo et al., 2025; Wang et al., 2023) that
often report results only on cooking, we evaluate the entire
Ego-Exo4D validation split spanning {cooking, health,
bike}, using their set of shared atomic-action labels. Be-
cause the atomic-action labels are provided as free-form
sentences rather than a fixed taxonomy, we parse them man-
ually to extract verb classes. We also filter out atomic labels

containing typographical errors and discard action clips
shorter than 1 s and longer than 5 s. After preprocessing, the
dataset provides 30,615 training clips and 8,961 validation
clips (each paired with an atomic-action label). In the end,
the training split we use includes 365 verb classes and 280
keysteps, while the validation split includes 234 verb classes
and 270 keysteps. We obey the training and validation splits
of the original downscaled takes/448.

PhyWorld. PhyWorld dataset (Kang et al., 2025)
comes with several synthetic subsets (e.g., collision,
trajectory, etc.), and we focus on collision for the
visual experiments to compare our method and Viewpoint
Rosetta. Because everything is rendered in 2D, there is
no real “viewpoint” shift like in ego–exo videos. This
means that the changes are mostly in appearance and setup.
In collision, two balls with different colors, sizes and
shapes start in different parts of the frame, collide, and then
move away, sometimes in different horizontal directions and
at different speeds. When we run retrieval on this subset,
Viewpoint Rosetta often matches clips by how the balls
look (color/size/shape) instead of how they move (direc-
tion/speed after the collision). Our method is more driven
by the dynamics, therefore indicating better fine-grained
atomic-action understanding. This matches what we see on
Ego-Exo4D and reinforces our appearance-overfit claim.

Zero-shot datasets. We evaluated zero-shot video-video
retrieval in Charades-Ego (Sigurdsson et al., 2018) (egocen-
tric split, 9,338 samples), NTU RGB+D (Shahroudy et al.,
2016; Liu et al., 2020) (fully exocentric, 56,880 samples)
and the validation split of Something-Something V2 (Goyal
et al., 2017) (predominantly egocentric, 24,777 samples).
Since PhyWorld does not provide text labels, we report
score-based metrics on the latter three datasets.

B.3. Baselines

For all baselines utilized, we use their pretrained check-
points available in their repositories. The details of their
structure, frame numbers T , input resolutions, and output
dimensions are given in Table 4.

Why we do not include AE2 and BYOV. AE2 (Xue &
Grauman, 2023) and BYOV (Park et al., 2025) focus on
learning correspondences between ego and exo videos with-
out requiring temporal alignment. In contrast, Ego-Exo4D
provides time-aligned ego–exo pairs, which we explicitly
leverage when sampling clips for training. Moreover, AE2
and BYOV are not trained as unified embedding models.
Instead, they release separate checkpoints for a small set
of specific tasks (e.g., Break Eggs, Pour Milk, Pour Liquid,
Tennis Forehand), each finetuned for that task. In practice,
these methods extract an ego clip embedding and search
for its time-synchronized exo segment, or vice versa, rather
than learning a single representation that generalizes across
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Table 4. Backbone architectures and embedding configurations for
all compared methods.

Method Backbone T Res. Dim

Ours Transformer + RAFT + DINOv3 8 2562 256
Rosetta CLIP OPENAI TIMESFORMER BASE 4 2242 256

(Radford et al., 2021; Bertasius et al., 2021)
LaViLa CLIP OPENAI TIMESFORMER BASE 16 2242 256

(Radford et al., 2021; Bertasius et al., 2021)
SUM-L MultiTaskSlowFast R101 (8×8) 32 2802 397

(Feichtenhofer et al., 2019)
EgoVLPv2 FrozenInTime base patch16 224 32 2242 256

(Bain et al., 2021)
EgoVLP FrozenInTime STT base patch16 224 16 2242 256

(Bain et al., 2021; Bertasius et al., 2021)
TimeSformer TimeSformer vit base patch16 224 8 2242 768

(Bertasius et al., 2021)
LAPA LatentActionQuantization (LAQ) 2 2562 128

(Ye et al., 2025)
LiFT dinov2 vits14 16 2242 768

(Oquab et al., 2024)
FlowFeat dinov2 vits14 yt 8 2242 768

(Oquab et al., 2024)
V-JEPA 2 vjepa2-vitl-fpc16-256-ssv2 16 2562 1024

(Assran et al., 2025)
DINOv3 dinov3-vits16plus 8 2242 384

(Siméoni et al., 2025)
CLIP clip-vit-base-patch32 8 2242 768

(Radford et al., 2021)

actions. Because they are task-specific and not designed for
general-purpose retrieval or atomic-action embedding, we
omit them from our comparisons.
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